Python Scripting in the Nengo Simulator

نویسندگان

  • Terrence C. Stewart
  • Bryan P. Tripp
  • Chris Eliasmith
چکیده

Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by the recent addition of a Python script interface. Nengo provides a wide range of features that are useful for physiological simulations, including unique features that facilitate development of population-coding models using the neural engineering framework (NEF). This framework uses information theory, signal processing, and control theory to formalize the development of large-scale neural circuit models. Notably, it can also be used to determine the synaptic weights that underlie observed network dynamics and transformations of represented variables. Nengo provides rich NEF support, and includes customizable models of spike generation, muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical user interface. All aspects of Nengo models are accessible via the Python interface, allowing for programmatic creation of models, inspection and modification of neural parameters, and automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated with any existing Java or 100% Python code libraries. Current work includes connecting neural models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine detailed neural models of specific brain regions with higher-level models of remaining brain areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural components, and (2) more realistic sub-components for the larger cognitive models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Optimization of the Computation Graph in the Nengo Neural Network Simulator

One critical factor limiting the size of neural cognitive models is the time required to simulate such models. To reduce simulation time, specialized hardware is often used. However, such hardware can be costly, not readily available, or require specialized software implementations that are difficult to maintain. Here, we present an algorithm that optimizes the computational graph of the Nengo ...

متن کامل

Nengo: a Python tool for building large-scale functional brain models

Neuroscience currently lacks a comprehensive theory of how cognitive processes can be implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes one such theory, but has not yet gathered significant empirical support, partly due to the technical challenge of building and simulating large-scale models with the NEF. Nengo is a software tool that can be used to build an...

متن کامل

PyMOOSE: Interoperable Scripting in Python for MOOSE

Python is emerging as a common scripting language for simulators. This opens up many possibilities for interoperability in the form of analysis, interfaces, and communications between simulators. We report the integration of Python scripting with the Multi-scale Object Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system for compartmental neuronal models and for...

متن کامل

Python as a Federation Tool for GENESIS 3.0

The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define b...

متن کامل

Building Cognition from Spiking Neurons: Nengo and the Neural Engineering Framework

There are two primary objectives for this full-day tutorial. First, we will demonstrate how complex cognitive architectures can be implemented using spiking neurons, including both low-level sensorimotor systems and highlevel systems such as working memory, symbol-like manipulations, and cognitive control. Second, we will identify the class of algorithms that neurons are particularly efficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Frontiers in Neuroinformatics

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009